

Challenges and
Opportunities



#### Overview

- Non-wire alternatives have increasingly become an area of focus
  - Distribution use-cases focus on reliability solutions, often when paired with solar resources
  - Transmission use cases focus on applications that involve
  - Sustainability vs Resiliency
- Challenges:
  - Ensuring value-stacking is understood properly
  - Cost
  - Operations and control



# Typical Distribution Use Case



Project Driver : Distribution Reliability

| Zone |        | Composite | Interrupt |       | Duration |          | Impact |        |        | Multi-Interrupt |        | Long Duration |         | Custo |
|------|--------|-----------|-----------|-------|----------|----------|--------|--------|--------|-----------------|--------|---------------|---------|-------|
|      | Type   | CI        | SAIFI     | MAIFI | SAIDI    | ASAI x1k | CAIFI  | CAIDI  | CTAIDI | CEMI_3          | CEMI_5 | CELID_4       | CELID_8 | 1     |
| 7    | 7 7    | 子         |           | マ     | Y        | Y        | Y      | Y      | Y      | Y               | Y      | Y             | Y       |       |
|      |        | -8.02     | 6.78      | 0.14  | 1825.74  | 996.53   | 0.00   | 269.33 | 0.00   | 1.00            | 0.70   | 0.88          | 0.74    |       |
|      | Feeder | -8.02     | 6.78      | 0.14  | 1825.74  | 996.53   | 0.00   | 269.33 | 0.00   | 1.00            | 0.70   | 0.88          | 0.74    |       |



## **Typical Transmission Use Case**



- Typical transmission use cases:
  - Applications that involve thermal overloads/voltage constraints that are forecasted to be observed for a few hours only
  - Another common use-case has been P6 contingencies that involve multiple contingencies
  - Incorporation of black-start and other such resiliency use-cases remains an important consideration
  - Ability to capture energy and ancillary market revenues is another important value driver



## Resiliency vs Sustainability

#### Both sustainability and resiliency are becoming important factors

- Resiliency favors technologies that allow parts of the system to:
  - black-start and
  - Restore power following a broader area outage
  - Often involves on-site fuel and other capabilities to black-start auxiliary load of generating resources
- Sustainability goals make it challenging to replace a wire solution with a non-wire alternative that is not carbon-efficient
  - Energy storage solutions lend themselves particularly well to meeting both resiliency and sustainability goals



## Challenges

#### Factors that challenge the implementation of NWAs:

- Ensuring value stacking does not erode primary use-case effectiveness and life expectancy
  - Use cases that involve more frequent charge-discharge cycles for the battery will erode expected battery life quicker
- Cost
- Assumes a particular usage profile
- Assumes a certain replacement timeframe
- All-in lifetime costs are still a challenge vis-à-vis the wire solution
- Operations and control
  - Use of non-traditional solutions to transmission and distribution constraints may involve integration with SCADA and advanced controls

